2.3 A thin film resistor made of Ge is 2 mm in length at its rectangular cross section is 0.2 mm x 1 mm.

\[\text{Ge: } p = 6.47 \ \Omega - \text{m} \]

\[R = \frac{pL}{A} \]

a) Top to Bottom: \[R = 6.47 \left(\frac{0.2 \text{ mm}}{2 \times 1 \text{ mm}^2} \right) \]

\[= 0.417 \left(\frac{6.2}{2 \times 16^{-3}} \right) = \frac{4766 \Omega}{\text{m}} \]

b) Front to Back: \[R = 6.47 \left(\frac{1 \text{ mm}}{2 \times 0.2 \text{ mm}^2} \right) \]
\[
= 0.47 \left(\frac{1}{0.4 \times 10^{-3}} \right) = 1175 \Omega
\]

(Left to Right): \(R = 0.47 \left(\frac{2 \text{mm}}{0.2 \times 1 \text{ mm}^2} \right) \)

\[
= 0.47 \left(\frac{2}{6.2 \times 10^{-3}} \right) = 41760 \Omega
\]

2.7 A 110V heating element in a stove can boil a standard size pot of water in 1.2 minutes, consuming a total of 136kJ of energy. Determine the resistance of the heating element and current flowing through it.

\[
P = \frac{E}{t} = \frac{136 \text{kJ}}{1.2 \text{min}} = \frac{136 \text{kJ}}{72 \text{ sec}} = 1889 \text{ W}
\]

\[1 \text{W} = \frac{J}{s}\]
\[P = IV = 1689 = 110 \cdot I \quad I = 17.17\, \text{A} \]

\[R = \frac{V}{I} = \frac{110}{17.17} = 6.41\, \Omega \]

2.11 Select \(R \) so that \(V_L = 9\, V \)

\[I_0 \quad 12\, V \quad I \]

\[3I_0 \]

\[500 \]

\[I_0 \quad \text{(Node 1)} \quad 3I_0 + 500I_0 \quad \rightarrow \quad 12 = R(4m) + 500(4m) \]

\[\text{Loop 1} \]

\[3I_0 + 500I_0 = \frac{9}{500} \]

\[R = 2500\, \Omega \]

\[I_0 = 4\, \text{mA} \]

2.17 Find \(I_1, I_2, I_3, I_4 \)

\[I_1, I_2, I_3, I_4 \]
All parallel so \[R_{eq} = \frac{1}{2} + \frac{1}{4} + \frac{1}{2} + \frac{1}{2} \]

\[R_{eq} = 0.67 \Omega \]

\[V_0 = 6 \cdot R_{eq} = 6 \cdot 0.67 = 4V \]

\(V_0 \) is over all resistors b/c parallel

\[I_1 = \frac{V_0}{2} = \frac{4}{2} = 2A \]

\[I_2 = \frac{V_0}{4} = \frac{4}{4} = 1A \]

\[I_3 = \frac{V_0}{2} = \frac{4}{2} = 2A \]

\[I_4 = V_0 = 4 \]

Check:

\[C = I_1 + I_2 + I_3 + I_4 \]

\[6 = 2 + 1 + 2 + 1 = 6 \checkmark \]
\[I_1 = \frac{V_0}{E_1} = \frac{V_1}{E_2} = 1 \text{A} \]

2.19 Determine \(I_x + I_y \)

Loop 1:

\[10 = 2I_x + 4(I_x-I_y) = 2I_x + 4I_x - 4I_y = 6I_x - 4I_y \]

\[I_x = \frac{10 + 4I_y}{6} \]

Loop 2:

\[4I_x = 4(I_y-I_x) + 6I_y = 4I_y - 4I_x + 6I_y = 10I_y - 4I_x \]

Substitute \(I_x \) from above

\[
\left(4 \left(\frac{10 + 4I_y}{6} \right) = 10I_y - 4 \left(\frac{10 + 4I_y}{6} \right) \right) \]

\[40 + 16I_y = 60I_y - 40 - 16I_y \]

\[80 = (60 - 16 - 16)I_y \quad I_y = 2.857 \text{A} \]

\[I_x = \frac{10 + 4(2.857)}{3.571} = 3.571 \text{A} \]
2.23 Determine Power supplied by independent current source

Current through R_1 resistor is $i_1 = \frac{V_1}{2}$

Node 1

$6.2 + \frac{V_1}{4} = \frac{V_1}{2} \quad 0.2 = V_1 (0.5 - 0.25) \quad V_1 = 0.8 \text{V}$

$V_5 = (\frac{V_1}{2}). 4 = 2 \cdot V_1 = 1.6 \text{V}$

$P = V_5 \cdot I = 1.6 \cdot 0.2 = 0.32 \text{W}$

2.25 Determine V_{11}, V_{21}, V_{31}
\[V_1 = \frac{3 \cdot 1}{1} = 6 \text{V} \]
\[V_3 = \frac{3 \cdot 1}{1} = 6 \text{V} \]

For \(V_2 \): looking at node 4

Current \(I_n = \text{current out} \)

With 1A in and 1A out, no current flows through middle 6Ω resistor

So \(V_2 = 0 \cdot 6 = 0 \text{V} \)

2.29 \(I_1 = 1 \text{A} \) Find \(I_0 \)

\(V = 1 \cdot 16 = 16 \text{V} \)

- Current through each resistor
\[I_0 = \text{current through each resistor} \]
\[= \frac{16}{1} + \frac{16}{2} + \frac{16}{8} + \frac{16}{16} = 16 + 8 + 4 + 2 + 1 = 31 \text{A} \]

2.34 Find \(R \) so \(V_L = 5 \text{V} \)

![Circuit Diagram]

No current flows through 1k resistor, so voltage over 2k resistor is 5V.
So \(V_2 = 5 \text{V} \)

Current through 2k resistor \(= \frac{V_2}{2k} = \frac{5}{2k} = 2.5 \text{mA} \)

This same current flows through \(R \) at node 1. 5mA goes in and divides in two equal currents (\(i_1 = 2.5 \text{mA} \))
So \(R + 2k = 5k \) \(R = 3k \text{Q} \)
2.38 Find Req at a, b

The two 5Ω resistors by c+d are not in a loop, so they do not get included.

4Ω ~ all in series

so 3+6+3=12Ω

12Ω in parallel \(\frac{6 \cdot 12}{6 + 12} = 4Ω\)

4Ω → 9Ω