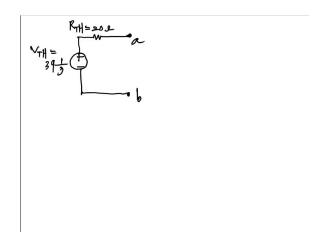


$$\frac{32 \times 35}{25 \Omega} = 8 V$$

$$\frac{300 \times 300}{400}$$



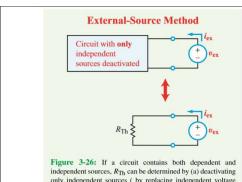
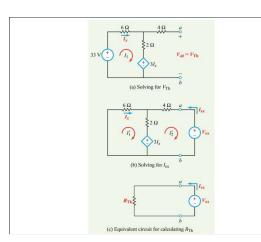


Figure 3-26: If a circuit contains both dependent and independent sources, $R_{\rm Th}$ can be determined by (a) deactivating only independent sources (by replacing independent voltage sources with short circuits and independent current sources with open circuits), (b) adding an external source $v_{\rm ex}$, and then (c) solving the circuit to determine $i_{\rm ex}$. The solution is $R_{\rm Th} = v_{\rm ex}/i_{\rm ex}$.



Solution: The KVL equation for mesh current I_1 in Fig. 3-27(a) is given by

$$-33 + 6I_1 + 2I_1 + 3I_x = 0.$$

Recognizing that $I_x = I_1$, solution of the preceding equation leads to

$$I_1 = 3 \text{ A}$$

Since there is no voltage drop across the 4 Ω resistor (because no current is flowing through it),

$$V_{\text{Th}} = V_{ab} = 2I_1 + 3I_x = 5I_1 = 15 \text{ V}.$$

To find R_{Th} using the external-source method, we deactivate the 33 V voltage source and we add an external voltage source V_{ext} , as shown in Fig. 3-27(b). Our task is to obtain an expression for I_{ext} in terms of V_{ext} . In Fig. 3-27(b) we have two mesh currents, which we have labeled I_1' and I_2' . Their equations are given by

$$6I'_1 + 2(I'_1 - I'_2) + 3I_x = 0,$$

$$-3I_x + 2(I'_2 - I'_1) + 4I'_2 + V_{ex} = 0.$$

After replacing I_x with I_1' and solving the two simultaneous equations, we obtain

$$I_1' = -\frac{1}{28} V_{\rm ex},$$

and

$$I_2' = -\frac{11}{56} V_{\text{ex}}.$$

For the equivalent circuit shown in Fig. 3-27(c),

$$R_{\mathrm{Th}} = \frac{V_{\mathrm{ex}}}{I_{\mathrm{ex}}}.$$

In terms of our solution, $I_{\text{ex}} = -I_2'$. Hence,

$$R_{\mathrm{Th}} = -\frac{V_{\mathrm{ex}}}{I_2'} = \frac{56}{11} \ \Omega.$$

To Determine	Method	f Thévenin/Norton analysis techniques. Can Circuit Contain Dependent Sources?	Relationship
UTh	Open-circuit v	Yes	$v_{\text{Th}} = v_{\text{oc}}$
v_{Th}	Short-circuit i (if R _{Th} is known)	Yes	$v_{\mathrm{Th}} = R_{\mathrm{Th}} i_{\mathrm{sc}}$
R _{Th}	Open/short	Yes	$R_{\text{Th}} = v_{\text{oc}}/i_{\text{se}}$
R_{Th}	Equivalent R	No	$R_{\text{Th}} = R_{\text{eq}}$
R_{Th}	External source	Yes	$R_{\mathrm{Th}} = v_{\mathrm{ex}}/i_{\mathrm{e}}$
$i_{\rm N} = v_{\rm Th}/R_{\rm Th};$	NN MI		