ECE101 F19 Lecture 17, Nov. 21, 2019
HW #9 for Quiz 9 on Dec. 3
1) Prob. 6.32
2) 6.38
3) 6.40
4) 6.52
5) 6.54
6) 6.58
7) Prob 7.1
8) 7.2
9) 7.5
10) Quiz 9 Aug 6.09 09.15

26 T
AC Analysis
ODE
28 th
AC Analysis
Transformer

Quiz 9
5 th Overview

Figure 7-46. Complex power supply circuit.

\[V(s) = \frac{A_1s + A_2}{s + \frac{1}{RC}} + \frac{B_1s + B_2}{s + \frac{1}{RC}} \]

\[V(s) = \frac{A_1s + A_2}{s + \frac{1}{RC}} + \frac{B_1s + B_2}{s + \frac{1}{RC}} \]

\[V(s) = \frac{A_1s + A_2}{s + \frac{1}{RC}} + \frac{B_1s + B_2}{s + \frac{1}{RC}} \]

\[V(s) = \frac{A_1s + A_2}{s + \frac{1}{RC}} + \frac{B_1s + B_2}{s + \frac{1}{RC}} \]

\[V(s) = \frac{A_1s + A_2}{s + \frac{1}{RC}} + \frac{B_1s + B_2}{s + \frac{1}{RC}} \]
\[A_1 \cos \omega t + A_2 \sin \omega t \]
\[= K \cos(\omega t - \theta) \]
\[= \sqrt{A_1^2 + A_2^2} \cos(\omega t - \theta) \]
\[\theta = \tan^{-1} \left(\frac{A_2}{A_1} \right) \]

\[K \cos \theta = A_1 \]
\[K \sin \theta = A_2 \]
\[K = \sqrt{A_1^2 + A_2^2} \]

Laplace
\[\mathcal{L} \left[v_c(t) \right] = \frac{V_c}{s} \]
\[s = \sigma + j\omega \]
\[s \to j\omega \]

Phasor Method
\[v_c = \frac{Z_c}{R + j\omega C} \]
\[v_c = \frac{V_c}{1 + j\omega C} \]
\[v_c = \frac{1}{1 + j\omega C} \]
\[v_c = \frac{1}{1 + j\omega \tau} \cos(\omega t) + j\omega \tau \sin(\omega t) \]

\[\exp(j \omega t - \theta) = \cos \omega t \cos \theta + \sin \omega t \sin \theta \]
\[\frac{\tau}{\omega} = \sin \theta \]
\[\sin \theta = 1 \cos \theta = 0 \]
\[\theta = \frac{\pi}{2} \]
\[
\frac{Z_1}{Z_2} = \frac{|Z_1| e^{j\theta_1}}{|Z_2| e^{j\theta_2}} = \frac{|Z_1|}{|Z_2|} e^{j(\theta_1 - \theta_2)}
\]
\[
Z_1 Z_2 = |Z_1|^2 e^{j\theta_1} \cdot |Z_2|^2 e^{j\theta_2} = |Z_1| |Z_2| e^{j(\theta_1 + \theta_2)}
\]

\[
\theta = -\tan^{-1} \left(\frac{\text{Im}(a+jb)}{\text{Re}(a+jb)} \right) = -\tan^{-1}(\text{Im}(a+jb))
\]

This is exactly the same as the solution obtained by the Laplace method in steady state.

\[
\text{cos}(\omega t + \phi)
\]
\[
\frac{\text{cos}(\omega t - \phi)}{\text{cos}(\omega t - (-\phi))} = \frac{\text{cos}(\omega t - \phi)}{\text{cos}(\omega t + \phi)}
\]

\[
\text{Im}(z) = 0, \quad \text{Re}(z) = 0
\]
\[
x = |a| \cos \theta, \quad y = |a| \sin \theta
\]
\[
|a| = \sqrt{x^2 + y^2}, \quad \theta = \tan^{-1}(y/x)
\]
Any cosinusoidally time-varying function \(x(t) \), representing a voltage or a current, can be expressed in the form

\[
x(t) = \Re\{X e^{j\omega t}\},
\]

(7.28)

where \(X \) is a time-independent function called the phasor counterpart of \(x(t) \). Thus, \(x(t) \) is defined in the time domain, while its counterpart \(X \) is defined in the phasor domain.

To distinguish phasor quantities from their time-domain counterparts, phasors are always represented by bold letters in this book.

\[
i(t) = \Re\{I e^{j\omega t}\} = \Re\{I e^{j(\omega t + \theta)}\}
\]

(7.35)

where \(I \) may be complex but, by definition, not a function of time. The derivative \(di/dt \) is given by

\[
\frac{di}{dt} = \Re\{ \frac{d}{dt} (I e^{j\omega t}) \} = \Re\{ j\omega I e^{j\omega t} \}
\]

(7.36)

\[
\frac{d}{dt} [\Im\{ I e^{j\omega t} \}] = \Im\{ j\omega I e^{j\omega t} \}
\]

\[
\frac{d}{dt} [\Im\{ I e^{j(\omega t + \theta)} \}] = \Im\{ j\omega I e^{j(\omega t + \theta)} \}
\]

Similarly,

\[
\int i \, dt = \Re\{ i e^{j\omega t} \} = \Re\{ i e^{j(\omega t + \theta)} \}
\]

(7.38)

or

\[
\int i \, dt = \frac{1}{j\omega} e^{j\omega t}
\]

(7.39)

\[
\int i \, dt = \frac{1}{j\omega} e^{j\omega t}
\]

(7.39)

\[
\int i \, dt = \frac{1}{j\omega} e^{j\omega t}
\]

The impedance \(Z \) of a circuit element is defined as the ratio of the phasor voltage across it to the phasor current entering through its plus (+) terminal.

\[
Z = \frac{V}{I} \quad (\Omega),
\]

(7.45)

and the unit of \(Z \) is the ohm (\(\Omega \)). For a resistor, Eq. (7.44) gives

\[
\frac{V_R}{I_R} = R.
\]

(7.46)
Phasors V_L and I_L are related to their time-domain counterparts by

$$v_L = \text{Re}(V_L e^{j \omega t}) \quad (7.48a)$$

and

$$i_L = \text{Re}(I_L e^{j \omega t}) \quad (7.48b)$$

Consequently,

$$\text{Re}(V_L e^{j \omega t}) = L \frac{d}{dt} \text{Re}(I_L e^{j \omega t}) = \text{Re}(j \omega L I_L e^{j \omega t}) \quad (7.49)$$

which leads to

$$V_L = j \omega L I_L \quad (7.50)$$

Hence, the impedance of an inductor L is

$$Z_L = \frac{V_L}{I_L} = j \omega L \quad (7.51)$$

\[\begin{array}{c}
\text{Capacitors} \\
\text{Since for a capacitor} \\
\frac{dQ}{dt} = C \frac{dv_c}{dt} \quad (7.52) \\
\text{It follows that in the phasor domain,} \\
\frac{dQ}{dt} = j \omega C \quad (7.53)
\end{array} \]

and the impedance of a capacitor C is

$$Z_C = \frac{V_c}{I_c} = \frac{1}{j \omega C} \quad (7.54)$$

Because Z_L and Z_C are, respectively, directly and inversely proportional to w, Z_L and Z_C assume inverse roles as w approaches zero and infinity.

\[\text{In the phasor domain, a capacitor behaves like an open circuit at dc and like a short circuit at very high frequencies.} \]

\[\text{Table 7-4: Summary of AC properties for } R, L, \text{ and } C \]

<table>
<thead>
<tr>
<th>Property</th>
<th>R</th>
<th>L</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v = j \omega L i$</td>
<td>$v = L \frac{di}{dt}$</td>
<td>$i = C \frac{dv}{dt}$</td>
<td></td>
</tr>
<tr>
<td>$v = R i$</td>
<td>$V = R I$</td>
<td>$V = j \omega L I$</td>
<td></td>
</tr>
<tr>
<td>$Z = \frac{V}{I}$</td>
<td>R</td>
<td>$j \omega L$</td>
<td>$\frac{1}{j \omega C}$</td>
</tr>
<tr>
<td>dc equivalent</td>
<td>R</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>High-frequency equivalent</td>
<td>R</td>
<td>Short circuit</td>
<td>Open circuit</td>
</tr>
<tr>
<td>Frequency response</td>
<td>Z_L</td>
<td>Z_C</td>
<td>Z_L</td>
</tr>
</tbody>
</table>

\[X = \sqrt{R^2 + \left(\frac{1}{j \omega C}\right)^2} \]

\[Z = \sqrt{R^2 + \left(\frac{1}{j \omega C}\right)^2} \]

\[\theta = \tan\left(\frac{\omega}{\sqrt{R^2 + \left(\frac{1}{j \omega C}\right)^2}}\right) \]